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Received 28 November 1978. in final form 4 June 1979 

Abstract. The application of the uniform theory of differential equations with two turning 
points is considered in relation to the modal eigenvalue problem for an inhomogeneous 
dielectric waveguide (optical fibre). Expressions are deduced for the leading asymptotic 
order term for the eigenvalue for modes not close to cut-off. 

1. Introduction 

The study of propagation in inhomogeneous dielectric waveguides has recently 
achieved a position of some importance due to the modern development of com- 
munication systems using these devices as transmission media. Of particular 
importance is the theoretical prediction of the group velocity of each individual 
waveguide mode; quite small differences between these velocities may cause severe 
distortion of a signal propagating along the waveguide. Previous attempts to analyse 
this problem have centred around the JWKB theory, very familiar in both wave optics 
and quantum mechanics (Gloge and Marcatili 1973). However, it is equally well known 
that these methods cannot be applied in the vicinity of certain points called turning 
points or caustics. These points divide the coordinate domain on which the wave 
problem is defined into disjoint regions, and one may pass from one region to another 
only by the use of special connection formulae (Froman and Froman 1965) or by 
matching expansions which are uniform about these points (Langer 1934). 

In problems originating in waveguide studies, however, this procedure has met with 
only limited success, for the principal reasons that the defining differential equation is 
singular in the domain of definition, and this domain is finite, requiring the application 
of boundary conditions at the end-points. This method, of piecewise asymptotic 
matching, was attempted by Kurtz and Streifer (1969), but has not ultimately led to a 
systematic theory of waveguide propagation. 

Here we shall approach this problem from the point of view of the uniform 
asymptotic theory of differential equations. In these methods one tries to find an 
asymptotic approximation to the original problem which is valid everywhere on its 
domain of definition. To apply boundary conditions at finite end-points, one then 
approximates further by deriving the JWKB or Langer approximations from this 
uniform representation. This has the great advantage of allowing the choice of different 
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348 J M  Arnold 

(non-uniform) approximating schemes to be chosen to match the parameters of the 
problem in a completely systematic and highly flexible manner. 

The problem we are going to consider here is defined by the differential equation 

d24/dpZ+,(U2- V2f+p/p2)4=0 ,  (1.1) 
i 2  where U’ is the eigenvalue, V is a large parameter, f is a known function, p = q - m , m 

is an integer, and q5 is a function which represents the field variation across the core of 
the waveguide. Boundary conditions 

p = o :  4-Pm+1’2 (1.2u) 

and 

p = l :  d4ldP = Kq5 (1.2b) 

have to be applied (K  is a constant depending on U and V ) .  These equations are 
considered in more detail in 0 2. In addition, the function f satisfies the following 
conditions: 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

f= 0 when p = 0; 
f= 1 whenp = 1 ;  
f is an analytic function of p 2 ;  
U 2  - V 2 f  has one zero in 0 s p s 1 ; 
U 2  - V 2 f +  pulp2 has two zeros in 0 s p s 1. 

( 1 . 3 ~ )  
(1.3b) 
(1 .3~)  
(1.3d) 
(1 .3e)  

These conditions are all fulfilled in practice. These assumptions about f ensure that 
the following classification holds for the differential equation in 0 s p  G 1: 

(i) it has two turning points; 
(ii) it has a regular singularity at the origin; 

(iii) its domain of definition is finite. 
The methods of Lynn and Keller (1970) could be used here if = 0 (no singularity). 

The eigenvalue problem on a finite domain was considered by Anyanwu and Keller 
(1975), but the generality of this treatment obscures the fact that a great deal more work 
has to be performed actually to secure an approximation for the eigenvalue. In 
addition, the existence of finite boundaries has the effect of permitting different types of 
expansion for U 2  according to whether U’<< V 2  or U 2  - V2.  The latter case we shall 
consider in the following paper, as it is considerably more complex. In that case, the 
conditions on f entail the confluence of the boundary p = 1 and a turning point, or 
alternatively the confluence of both turning points, and the detailed calculations can be 
quite complicated. In this paper we shall formulate the uniform approximation 
problem and solve the eigenvalue problem for the case U’ 7L V 2 .  As we have said, it is 
necessary to treat the singularity of the differential equation, a case not covered by Lynn 
and Keller, and to apply boundary conditions at finite end-points. 

The principal difficulty encountered in attempting to apply formal treatments such 
as those referred to in the previous paragraph is that one finds, when all the calculations 
have been carried through, that the condition which results for determination of the 
eigenvalue is strongly implicit; the eigenvalue appears as a parameter quite deeply 
imbedded in the arguments of various transcendental functions, and means must still be 
found by which an explicit condition for the eigenvalue can be obtained. This is the 
problem to which this paper and the following one are addressed. A direct approach to 
the formal implicit equations rapidly fails under the mounting complexity of the 
calculations which ensue, and one of the objects of this study is to consider an 
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alternative formulation, in which specific hypotheses are made with regard to the 
eigenvalue ab initio, thereby effectively separating the dependence of the solutions on 
various parameters. It is, perhaps, worth noting here that this particular problem 
assumes major proportions only when finite boundaries exist. In that case, one requires 
two linearly independent solutions which must be correctly normalised in order to apply 
boundary conditions. This situation is exceptional in quantum mechanics, but normal 
in waveguides, and this accounts for the lack of any adequate treatment of such 
difficulties in the literature. 

The present study, then, is to be regarded as an attempt to determine what exactly is 
involved in the application of uniform asymptotic methods to the problem of determin- 
ing the eigenvalues of equation (1.1) under realistic conditions appropriate to its 
physical context. 

Although the derived eigenvalue result, equation (4.11), bears a marked resem- 
blance to the JWKB result, it is not identical to it. In addition, the equations by which 
higher-order approximations can be calculated are included here implicitly in equations 
(3.15) and (3.16), and the analysis can be developed in a relatively straightforward 
fashion from the foundations laid here, although the complexity of the calculations is a 
serious difficulty. 

2. Differential equation 

Here the differential equation (1.1) and its boundary conditions will be derived briefly. 
The modes of a dielectric waveguide are most conveniently discussed by using the 

scalar approximation (Gloge 1971, Kurtz and Streifer 1969, Kirchhoff 1973). We 
suppose that the waveguide is composed of a cylindrical region (the core) surrounded by 
an infinite homogeneous medium (the cladding). The refractive index of the core is 
supposed to vary smoothly such that 

n 2  = n i  - ( n i  - n; ) f [ ( r /a )*] ,  (2.1) 

where, if r is the radius and a the core diameter, 

(2.2a) 

(2.2b) 

andf satisfies the five conditions stated in 8 1. We also suppose that the refractive index 
in the outer region is everywhere n2. Thus, at r = a,  the refractive index is continuous 
but its derivative is not. The scalar approximation results from the assumption that 

(2.3) 2 2 2  no -n2 << no. 

In that case, the fields of the waveguide modes are linearly polarised, and the electric 
field may be written, for a particular mode, as 

, (2.4) E = E  e ime e i ~ z  
* x  

where E, is a function of r alone, and U, is a unit vector normal to the waveguide axis ( z  
axis). 8 is the polar angle measured from the x axis. Thus, in polar coordinates 
(r, 8, z ) ,  E, satisfies 

(2.5) 
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which is the wave equation for an inhomogeneous region, valid under the scalar 
approximation. 

The scalar approximation has been discussed many times in the literature, and is a 
direct consequence of the physical fact that the refractive index does not change 
appreciably over the scale of a wavelength. Under these circumstances the ray bundle 
which constitutes a mode is paraxial to a good approximation, and the polarisation state 
of the mode is essentially linear. This is, nevertheless, an approximation, in which two 
nearly degenerate vector modes (EH and HE hybrids) are combined in such a manner as 
to preserve linear polarisation over very large distances (Gloge 1971). It is a very good 
approximation under the circumstances in question here. 

By making the substitutions 

E, = r-'"4, ( 2 . 6 ~ )  

P = r / a ,  
( n ~ k 2 - p 2 ) a ' =  U', 

( n i k 2 - n : k 2 ) a 2 = V 2 ,  

(2 .66)  

( 2 . 6 ~ )  

(2 .6d )  

(2 .6e)  

( 2 . 6 f )  
(2.5) transforms to 

d24/dp2+ (U2  - V'f + p/p2)4  = 0 (2 .7 )  
as stated in Q 1. 

In the outer region, the function 4 satisfies 

where 

( 2 . 9 ~ )  

(2 .96 )  

The solution of (2 .8 )  is 

4 = P ' " K m (  WP) (P 3 I ) ,  (2 .10)  

where K,(X) is the modified Hankel function (Abramowitz and Stegun 1965). Since 4 
and d4/dp must be continuous at p = 1 ,  we must have 

(2 .11)  

(2 .12)  

where 4 is the solution of equation (2 .7) .  The boundary condition at p = 0 is that E, 
must behave like p m  there, so 

P + O ,  (2 .13)  

is the condition for q5. (Alternatively we may say that p - ' / ' 4  must be regular at p = 0.) 

(2 .14)  

m + 1 / 2  
4 - P  9 

We note also that the substitution (2 .96 )  takes (2 .7)  into 

d'qbldp' + ( V'Q' - W' + p/p2)4 ,  
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where 
2 Q =1-f. 

This equation is much more useful than (2.7) when W2<< V2. 
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(2.15) 

3. Uniform approximation of I$ 

The principle we adopt here is to try to find a Liouville transform (Olver 1974) which 
takes (2.7) into a suitable equation which can be solved approximate1y.t Since the 
original equation has two turning points, we would try to obtain a related equation 
having two turning points also. Furthermore, the singularity at p = 0 must be reflected 
in the new equation. We do this by applying the Liouville transformation 

cp = (dt/dp)-’%, (3 . la )  

(2: - 2’) (dZ/dp)’ = U’/ V2 - f. (3 . lb)  

It is necessary that, in order to obtain uniform approximations later, the trans- 
formation from z to p (3.lb) should be analytic in both directions. Iff is analytic, then 
this is ensured by making the zeros of both sides of (3.lb) coincide. Thus if 

U2 /V2- - f=0  when p = pl, 

then p + p1 should imply z + zl. Integrating (3. lb)  we obtain 

The lower limits are set to zero to ensure that z + 0 as p + 0. The left-hand side may be 
integrated explicitly to give 

(3.3) 

Applying this transformation to the differential equation we find that @ must satisfy 

and 

h = -($) ‘I2 d2 (E)-~” dp 

(3.4) 

(3.5) 

(see Olver (1974) for the general properties of Liouville transforms). 

z + O  as p + 0, 
To treat the singular term we note that, near p = 0, equation (3.lb) implies that, if 

2: (dZ/dp)’- U’/ V2 + O(p2), (3.6) 

t Hashimoto (1976 IEEE Trans. Micro. Theory and Tech. MTT-24, pp 5 5 9 4 6 )  has used the Liouville 
transform in a perturbation method for slab waveguides, but this analysis is expressedly not asymptotic and is 
quite different to the methods described here. 
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and it is easily found from this that 
2 ; (g) -<+0(1 ) .  Z 

Thus (3.4) becomes 

d2@/dz2+[ V2(2: - - Z ~ ) + / L / Z ~ + E ] @  = 0 

where 

h + 0 ( 1 )  = E .  

(3.7) 

(3.8) 

(3.9) 

Now it is further easily proved that, if z and p are analytic functions of each other, E is an 
analytic function of z for all 0 s p s 1. In that case, one may show that the differential 
equation (3.8) has the asymptotic solution, as V + m ,  

@ - @O, 
where 

d2@o/dz2 + [ V2(z: - 2') + / L / z ~ ] @ O  = 0 

(3.10) 

(3.11) 

(i.e. that E may be neglected as V + 03). To do this we try to solve (3.8) in the form 

@ =A@o + (B/ V2)d@.o/dz. (3.12) 

By substituting (3.12) in (3.8) and using (3.11), we obtain the pair of differential 
equations 

dA 1 d2B 
dz 2V2  dz 
_- - - (2 + EB) ,  (3.13) 

d[(z: - Z ~ ) ' / ~ B ] / ~ Z  =$(z: -t2)-1/2 (d2A/dt2+EA), (3.14) 

which have the integrals 

A = A o - 7 / z z 1  1 (-+eB) d2B dz', 
2 v  dz l2 

B = -  ---+EA 
2(2: -z2)1 /2  lZz1 (dz" 

d2A dz'  
( z :  - z ' ~ ) ~ / ~ '  

(3.15) 

(3.16) 

A0 is a constant which may be set to unity because of the homogeneity of the equations. 
It is now apparent that, as V + 03, 

A + A o = l  

and 

(3.17a) 

(3.17b) 

The form of E is rather complicated, making further calculation rather difficult; 
however, equations (3.13) to (3.16) are well suited to numerical computation, their 
solutions being analytic functions of t. Nevertheless, we have done enough to show that 
equation (3.10) is a valid asymptotic form for Q, as V + m ,  which is all we need. 
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Finally, we may approximate 4 by 

4 - (dz/dp)-1/2@o, V+cO, (3.18) 

as our final asymptotic approximation, uniform on 0 S p s 1. We must now look more 
closely at Q0. 

Q0 is a solution of (3.11); with the substitutions 

u 2 =  vz2,  (3.19a) 

2(2v + m  + 1) = VZ?, (3.196) 

this becomes 

d2@0/du2 + [2(2v + m + 1) - u 2  + F / u ~ ] @ o  = 0, (3.20) 

and this is recognisable as Laguerre's differential equation. Its solutions are related to 
the extended Laguerre functions (Arnold 1977), the confluent hypergeometric 
functions (Buchholz 1961, Slater 1960) or the Whitaker functions (Whitaker and 
Watson 1965). The first of these forms is most suitable for our application. We write 

(3.21) = U ( m + 1 / 2 ) / 2  e -u /2  L I" ( U  ) , 

or, in terms of z,  

@o = Z m + l / 2  exp(- vz2/2) LI"(vz~) (3.22) 

(an unimportant constant v ( * + ~ / ~ ) / ~  has been dropped). A contour integral exists for 
LI"(u) (Arnold 1977T): 

(3.23) 2" e-''2LIm'(u) = (e-""'w1 +eywi  w2)/2.rri 

with, for j = 1,2,  

(3.24) 

where C1 passes from s = -1 to s = 00 e'"(a > 0) and C2 is the image of C1 in the real 
axis, in the opposite direction. The function LI"(u) reduces to the Laguerre poly- 
nomial L;"(u) when v = q, an integer. 

4. Approximation for U*# V 2  

Having now obtained an approximate solution for the original differential equation, we 
turn our attention to the calculation of the eigenvalue, which allows the parameter U in 
(3.196) to be determined. To do this, the boundary condition (2.11) must be applied at 
p = 1. Let us suppose that z + zo as p + 1. Then integrating (3.16) we obtain 

(4.1) 

which can be used to determine zo. The boundary condition (2.11) for q5 at p = 1 can be 
converted into one for @ at z = zo by use of (3 . la) ,  and we obtain 

d@/dz = KO@ ( 2  = 20) (4.2) 

f Several typographical errors occurred in this paper; see reference. 
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where 

J M Arnold 

(4.3a) 

(4.3b) 

and the derivatives are evaluated at p = 1. Now, approximating Q, by Q, - Q0, we have 

dQ,o/dz - K&o (4.4) 
as the approximate boundary condition for Q,o. The problem now becomes that of 
determining v such that (4.4) is satisfied, and with this in mind we further approximate 
0 0 .  

Inspection of equation (3.1 1) and application of the Liouville-Green approximation 
(Olver 1974, p 191) indicates that Q0 should have an approximate representation, as 
V+W, 

@o-AiQ,i +A2@2, (4.5) 
where 

Q1 = P-1/2 exp ( - P dz'), 

Q,2 = P-"' exp ( V Iz: P dz ') , 
(4.6a) 

(4.66) 

( 4 . 6 ~ )  

This approximation holds whenever z > zl, and is accurate if z is not too close to zl. A l  
and A2 are constants which remain to be determined; this can be achieved by 
integrating equation (3.24) by the method of steepest descent (using the substitution 
s = tanh 6 )  and comparing the final result (using (3.22) and (3.23)) with the assumed 
form (4.5). This calculation is carried out in the Appendix. It turns out that 

2 112 P = ( z 2 - 2 1 )  . 

Ai =A0 COS (vT),  (4.7a) 

A2 = -2Ao sin (YT), (4.7b) 

where A. is a constant whose value is not required because (4.4) is homogeneous. 
Substitution of (4.7) in (4.4) and rearrangement of the subsequent equation gives 

2 tan ( Y T )  - P'/2d(P-'/2)/dz P'/2d(P-'/2)/dz - + VP-KO VP - KO e~p(-ZV/~:Pdz ' ) ,  (4.8) 

with the derivative and P evaluated at z = ZO (except in the integral of course). The 
behaviour of the exponential is dominant on the right-hand side of (4.8), making it 
exponentially small. Therefore, asymptotically tan (VT) - 0 and hence 

v -q  + 6/T ,  (4.9) 
where q is an integer and 

e = tan-'( - 1 P'l2 (dP-'/'/dz) - VP- KO exp(-2VfzyPdz ' ) ) .  (4.10) 2 P1/2 (dP-'/'/dz) + VP- KO 
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Then, using equations (3.3) and (3.196), we find with (4.9) and (4.10) 

lop’ ( U 2 -  V 2 f) 1/2 dp’-2(2q+m+1)$+8.  (4.11) 

This expression is the required condition which determines the eigenvalue U’. Its 
dependence on U 2  is implicit, both because of the left-hand side, and because 8 
depends on U 2  also. If, however, f is quadratic ( f = p 2 )  and t9 is negligible, (4.11) 
reduces to 

v2/ v - 2(2q + m + I) ,  

which is explicit, and it can be conjectured that, i f f  is ‘nearly’ quadratic, and V is large, 
reasonable approximations can be obtained. Clearly, the problem is that of separating 
the terms p l ,  f, V, U, and 8 which appear in (4.1 1) and mix in a complex way. This can 
be facilitated by some specific hypothesis on U’. We shall consider the ansatz that 
U’/ V tends to a limit as V + 00, which corresponds physically to selecting a definite 
mode and following it as V is made indefinitely large. However (4.11) is quite general, 
and may be used to determine U’, under less specific conditions. For example, one 
might simply set 8 = 0 ,  to obtain v = q ,  allow (4.11) to determine U 2  implicitly 
(approximately), then formally calculate 8 using this approximate value of U2.  This 
leads to an iterative scheme for U’. It does not result in simple asymptotic properties of 
the eigenvalue, however, and the formal structure of uniform approximation as 
described here becomes rather cumbersome. To take full advantage of this type of 
procedure, fairly radical modifications in the formalism are required, and these are to 
form the subject of the following paper. 

f = P 2 ( 1  + a), 
To make further progress, we need some assumptions about f ;  we let 

(4.12) 

where E is a small parameter and g is an arbitrary analytic function of p 2 ,  such that g = 0 
at p = 1. We will now evaluate 

lim (7). U 2  
v - m  

We shall show that this limit exists, and that at any finite V the error is O(V-’). 
Referring back to the original approximate treatment of the differential equation, it will 
be observed that such an error is of the same order of magnitude as terms which have 
already been ignored to reach equation (3.11), and could not be accurately calculated. 

This approximation reduces the mathematics to its essentials, but still supplies a 
useful result. In purely numerical methods of integrating equation ( l . l ) ,  for example, 
one cannot proceed without an initial estimate of U’, and the formula we deduce here is 
well suited to that purpose. Furthermore, as the dominant term of the eigenvalue 
expansion, it can be used to reduce the labour of obtaining higher-order terms by using 
it explicitly. The higher-order calculations are extremely involved and an adequate 
treatment of this problem would completely obscure the essential principles which we 
seek to elucidate here. 

With these comments in mind, we sha!l proceed with the evaluation of the 
above-mentioned limit for the function f in equation (4.12). If 

U 2  
x o =  iim (7) 

V-m 
(4.13) 
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exists and is finite, then U‘/ V2 is O( V I ) .  Since f+ 0 as p + 0, and is a function of p2,  
we infer that 

p: - O( V-l) (4.14) 

is quite small over its whole range. In particular, let 

x =  u 2 / v - x o + o ( v - 1 ) ;  (4.15) 

then 

must be solved for p l ,  
Let 

g=go+glp2+g2p4+.  . . ,  
O=go+g1+gz+. . . = g ( l ) .  

Then 

( 4 . 1 7 ~ )  

(4.17b) 

p: = (1 + EgO)-l(X/ V) + O[(X/ v)21. (4.18) 

Performing the integration (4.11) by extracting the quadratic part of f we obtain 
(neglecting 0 as exponentially small) 

( 2 N ) ~ / 4 =  V[p:(l + ~ g o ) ~ ’ ~ ~ / 4 + O ( p ? ) ] ,  (4.19) 

with 

N = 2q + m + 1.  (4.20) 

Since p1 + 0 as V + 00, we can use (4.18) again to find 

2 N  = x (1  + Ego)-’” + O(p:), 

and hence 

X O =  V-00 lim (x) = 2N(1 +Eg0)li2. (4.21) 

Therefore 

U2/V=2N(1+~gO)1i2+0(V-1) ,  (4.22) 

The error term becomes larger as N increases. The expression (4.22) is exact when 
E = 0 (quadratic index function f = p 2 ) ;  then 

U’/ V)l,=, = 2 N  = 2(2q + m + 1). (4.23) 

This is because the Liouville transformation is trivial. For this reason we may refer to 
this type of analysis as quasi-quadratic perturbation theory; the exact, non-quadratic, f 
is replaced by an approximate quadratic f when V +  00. Equation (4.22) is the final 
expression for the eigenvalue U’. The integers q and m are taken as mode indices, each 
pair of values signifying a separate mode. 

Two points emerge from this analysis. Firstly, the result v = q is exactly what we 
would have obtained if the existence of the boundary had been ignored, and we had 
instead insisted that only the recessive solution O1 be present. Thus, the effect of the 
cladding boundary is exponentially small. 
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Secondly, it should be noted that the methods we have used are not valid when p is 
not O(1). This is because, if this were the case, the 0(1)  term in equation (3.7) would 
not be correct (it is actually O(p) ) ,  and it would therefore not be possible to neglect it 
along with E in passing from (3.8) to (3.1 1). This is a serious disadvantage, as it restricts 
the modes for which the theory applies to those having azimuthal number m - O( 1). 
Some modes near cut-off have m - O( V ) ,  and these cannot be adequately accounted 
for. 

Equation (4.11) represents the general solution to the problem and (4.19) is the 
result of a specific hypothesis to separate the known from the unknown variables. 
Although the approach is perturbative, and will only hold for small E ,  it should be noted 
that if E were large, it is probable that more than one zero of ( U 2  - V’f) would exist in 
0 c p c 1 and the whole asymptotic theory would fail. 

5. Conclusions 

We have been exploring the possibility here of applying the uniform asymptotic theory 
of differential equations to the problem of determining the eigenvalues of the equation 
describing wave propagation in an inhomogeneous dielectric waveguide. We have 
shown how the singularity of the differential equation can be accounted for, if the 
azimuthal mode number m is small, and we have considered the effect of applying 
boundary conditions at the ends of a finite region 0 C p G 1. The determination of the 
eigenvalue U 2  has been carried through for those modes not close to cut-off, and it has 
been seen that a perturbation theory can be constructed for quasi-quadratic index 
variations. 

It is a general feature of uniform approximations that the eigenvalue is only 
determined implicitly, and some hypothesis must be introduced to facilitate its explicit 
evaluation by separation of the relevant variables. It is also a general feature that the 
eigenvalue U 2  cannot be determined beyond an 0(1) error term, as such terms are 
specifically ignored (the approximation leading to equation (3.1 1)). To retain these 
terms requires the solution of (3.15) and (3.16), a formidable undertaking on any level 
other than the purely formal. 

The extension of this analysis to modes near cut-off requires approximations 
different to those made in 3 4, and this will be pursued separately. The object of this 
paper has been to lay the foundations for such an analysis. Further extension to modes 
having larger values of m is also required. 
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Appendix 

We have to evaluate the normalisation constants A I  and A2 in equation (4.5). This is 
done by evaluating the contour integrals in equation (3.24) and expressing the result in 
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the same form as equation (4.5), thereby identifying the constants. The integration is 
performed by the steepest-descent method. 

First, let s = tanh 6 in equation (3.24). Then 

W, = (sech euFce)de (i = 1,2) (AI) I: 
and 

F ( 0 )  = f (0 sech2 Bo- tanh e),  
cosh' Bo = [ u / 2 ( 2 v  + m + l)]. 

The contours c {  and c; are shown in figure l (a) .  

Figure 1. ( 0 )  &plane contours. ( b )  Steepest-descent contours. 

The saddle points are at 

dF/de = 0 

i.e. 

e = i Bo. (A41 
Now 

w1 + e""'WZ = cos (m)( w1 + WZ) + i sin (YT)( w2 - w,) 
= cos ( V T )  W3 + i sin ( YT) W4, (-45) 

where 

w3 = w1+ w2, w4= w2- w*. 
W3 may be writen as 

W3 = IC, (sech' 0) mi-1 e de, (A7) 

where c; is shown in figure l(a),  as the integrand has no singularities between the three 
contours, so that 

Wl+ w2- W 3 = 0  (A81 
when W3 is given by (A7). 



Inhomogeneous dielectric waveguides 359 

Further investigation of the integrands of Wl, W2 and W3 shows that, on the real 
axis, F(-Oo) is a maximum and F(OO) is a minimum. Therefore the contours c j  can be 
deformed into the steepest-descent contours c y ( j  = 1 ,2 ,3 )  in figure l ( b ) .  The 
steepest-descent integrals may be carried out to give (for U + 03) 

W1 -A (sech eo)” (U tanh 80)-1/2 exp (-uF(Oo)), (A91 

W2 - -A (sech eo)” (U tanh exp(-uF(Oo)), (A101 
W3 - iA (sech eo)” ( U  tanh 80)-1/2 exp (&(Bo)), ( A l l )  

where A is a constant emerging from the steepest-descent integral. Now, by equations 
(A3), ( 3 . 1 9 ~ ~ )  and (3.19b) we have 

z = z1 cosh 80, (‘412) 

and a little algebra shows that 

(A131 U 2 112 

2 
uF(eo) =- (O0--sinh eo cosh eo) = -VIz: ( Z ’ ~ - Z ~ )  dz’. 

Substituting (A12) and (A13) in equations (A9) to ( A l l )  gives 

r z  

where 
2 112 P = ( z 2 - z 1 )  

and A’ is a constant. 

consistent, since equations (A14) and (A15) indicate that 
At this point we observe that equations (A14), (A15), (A16) are not apparently 

w3= w1+ w2-0. (‘418) 

They are consistent within the asymptotics, however, because W3 is exponentially 
small. By adding any multiples of W3 to Wl and W2, exponentially small corrections 
can be made to the latter, the origin of which is the second saddle-point 8 = Bo. The 
coefficients of these terms cannot be determined by this method. 

On using the expressions (A14)-(A17) we obtain the result 

@o-Ai@i +Az% (A19) 
where 

A l  = A o  [cos (YT)+ y sin ( Y T ) ] ,  

A2 = -2 A. sin ( v T ) ,  

(A20a) 

(A20b) 

where A. is a constant and y is undetermined, due to the above ambiguity in the 
dominant solution @2. 
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In applying the boundary conditions, it turns out that Y differs from an integer by an 
exponentially small amount. Hence, the second term in (A20a) may be neglected to 
obtain 

A ~ = A ~ c o s  (vT), (A21a) 

A2 = -2 A. sin (m). (A2 1 b )  

This neglect does not affect the determination to first order of the exponentially small 
contribution to Y implied by (4.9) and (4.10), but does affect higher corrections. These 
are so small as to be completely negligible, and the neglect of the undetermined term in 
(A20a) is entirely consistent. 
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